

Finite Automata
Part Two

Outline for Today

● Recap from Last Time
● Where are we, again?

● Designing a DFA
● How to think about fnite memory.

● Regular Languages
● A fundamental class of languages.

● NFAs
● Automata with Magic Superpowers.

● Designing NFAs
● Harnessing an awesome power.

Recap from Last Time

Formal Language Theory

● An alphabet is a set, usually denoted Σ,
consisting of elements called characters.
● a ∈ Σ means “a is a single character.”

● A string over Σ is a fnite sequence of zero or
more characters taken from Σ.

● The empty string has no characters and is
denoted ε.

● A language over Σ is a set of strings over Σ.
● The language Σ* is the set of all strings over Σ.

● w ∈ Σ* means “w is a string of characters from Σ.”

The Language of an Automaton

● If A is an automaton that processes
strings over Σ, the language of A,
denoted (ℒ A), is the set of all strings A
accepts.

● Formally:

ℒ(A) = { w ∈ Σ* | A accepts w }

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs

● A DFA is defned relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defned for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

New Stuf!

Designing DFAs

● At each point in its execution, the DFA
can only remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.
● Each state acts as a “memento” of what

you're supposed to do next.
● Only fnitely many diferent states means

only fnitely many diferent things the
machine can remember.

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start

a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1

b

a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1

b

a a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Each state remembers
the remainder of the
number of bs seen

so far modulo three.

Each state remembers
the remainder of the
number of bs seen

so far modulo three.

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1

a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1

a

b

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

If L is a language and (ℒ D) = L, we say that
D recognizes the language L.

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

Σ*

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

Σ*

L

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

L L

Σ*

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

L L

Σ*

Good proofwriting
exercise: prove L̿ = L
for any language L.

Good proofwriting
exercise: prove L̿ = L
for any language L.

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }

How do we turn the DFA above
into a DFA for L?

Answer at
https://pollev.com/cs103

How do we turn the DFA above
into a DFA for L?

Answer at
https://pollev.com/cs103

https://pollev.com/cs103
https://pollev.com/cs103

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

q5

q3q2q1q0

Closure Properties

● Theorem: If L is a regular language, then L is
also a regular language.

● As a result, we say that the regular languages
are closed under complementation.

All languages

Regular languages

L

L

Question to ponder:
are the nonregular
languages closed

under
complementation?

Question to ponder:
are the nonregular
languages closed

under
complementation?

NFAs

The Motivation

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.

(Non)determinism

● A model of computation is deterministic if at every
point in the computation, there is exactly one choice
that can make.
● The machine accepts if that series of choices leads to an

accepting state.
● A model of computation is nondeterministic if the

computing machine has a fnite number of choices
available to make at each point, possibly including zero.

● The machine accepts if any series of choices leads to an
accepting state.
● (This sort of nondeterminism is technically called existential

nondeterminism, the most philosophical-sounding term
we’ll introduce all quarter.)

A Simple NFA

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

A Simple NFA

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

q0 has two
transitions defned

on 1!

q0 has two
transitions defned

on 1!

A Simple NFA

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0

 0, 1

 0, 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

If a NFA needs to make a
transition when no transition
exists, the automaton dies

and that particular path does
not accept.

If a NFA needs to make a
transition when no transition
exists, the automaton dies

and that particular path does
not accept.

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

Oh no! There's no
transition defned!

0 1 0 1 1

q1q1q0q0 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1

1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1

1

 0, 1

0 1 0 1 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1

1

 0, 1

Hello, NFA!

q2q2q2q2q1q1q0q0

start h i

h i

q0 q2q2q2q2

Hello, NFA!

q1q1q0

start h i

h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1

start h i

h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1

start h i

h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q2q2

Tragedy in Paradise

q1q1q0q0

start h i

h i p

q0 q2q2q2q2

Tragedy in Paradise

q1q1q0

start h i

h i p

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

start h i

h i p

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

start h i

h i p

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0 q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0

start a b

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of each NFA? (Assume Σ = {a, b}.)
Answer at https://pollev.com/cs103

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of each NFA? (Assume Σ = {a, b}.)
Answer at https://pollev.com/cs103

q1q1q0q0
q2q2q2

start a a q2

 a, b

q0

start
q0q0

start
q0q0

start
 Σ

https://pollev.com/cs103
https://pollev.com/cs103

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q0 q1

q4 q5

q2

q0q3

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2
a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q5

q2
a

ε

a

b

b, ε b

a

ε

b a a b b

q4

q1

q4q0q3q3

q0q0 q1

q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

q2
a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q1 q2

q4

q1

q4q0q3q3

q0q0

q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0 q2q1 q2

q4

q1

q4q0q3q3

q0

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3

q0q0 q2q1 q2

q4

q1

q4q3 q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q0q3q3

q0q0 q2q1 q2

q4

q1

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

b a a b b

q4 q5q4q0q3q3

q0q0 q2q1 q2q1

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3 q5q4 q5q4q3

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

b a a b b

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

● NFAs are not required to follow ε-transitions.
It's simply another option at the machine's
disposal.

Intuiting Nondeterminism

● Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

● There are two particularly useful
frameworks for interpreting
nondeterminism:
● Perfect positive guessing
● Massive parallelism

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start
q₀ q₁ q₂a b

Σ

q₃a q₃

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₀ q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃

Perfect Positive Guessing

● We can view nondeterministic machines as
having Magic Superpowers that enable them
to guess choices that lead to an accepting state.
● If there is at least one choice that leads to an

accepting state, the machine will guess it.
● If there are no choices, the machine guesses any one

of the wrong guesses.
● There is no known way to physically model this

intuition of nondeterminism – this is quite a
departure from reality!

q₃q₃q₂q₁ q₂q₀ q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃q₃

We're in at least one accepting
state, so there's some path that
gets us to an accepting state.

We're in at least one accepting
state, so there's some path that
gets us to an accepting state.

q₀ q₃q₂q₁

Massive Parallelism

start

a

a b

Σ

b a b

a q₃q₀

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃q₃

We’re not in any
accepting state, so no
possible path accepts.

We’re not in any
accepting state, so no
possible path accepts.

Massive Parallelism

● An NFA can be thought of as a DFA that can be in many
states at once.

● At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

● (Here's a rigorous explanation about how this works; read
this on your own time).
● Start of in the set of all states formed by taking the start state

and including each state that can be reached by zero or more
ε-transitions.

● When you read a symbol a in a set of states S:
– Form the set S’ of states that can be reached by following a single a

transition from some state in S.
– Your new set of states is the set of states in S’, plus the states reachable

from S’ by following zero or more ε-transitions.

Designing NFAs

● Embrace the nondeterminism!
● Good model: Guess-and-check:

● Is there some information that you'd really like to
have? Have the machine nondeterministically guess
that information.

● Then, have the machine deterministically check that
the choice was correct.

● The guess phase corresponds to trying lots of
diferent options.

● The check phase corresponds to fltering out
bad guesses or wrong options.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

0

 1

1

 1

0

0 1

0

1

 0

1

start

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

C

G

0

1 0

1
0 1

start Σ

Nondeterministically guess when the
end of the string is coming up.

Deterministically check whether you
were correct.

Nondeterministically guess when the
end of the string is coming up.

Deterministically check whether you
were correct.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a

b

c

a

b

a, b

c
 a

c

b

c

c

a
b

a, c

b, c

b

a

 Σstart

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

Nondeterministically
guess which

character is missing.

Deterministically
check whether that
character is indeed

missing.

Nondeterministically
guess which

character is missing.

Deterministically
check whether that
character is indeed

missing.

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Just how powerful are NFAs?

Next Time

● The Subset Construction
● So beautiful. So elegant. So cool!

● Closure Properties of Regular
Languages
● Transforming languages by transforming

machines.
● The Kleene Closure

● What’s the deal with the notation Σ*?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219

